skip to main content


Search for: All records

Creators/Authors contains: "Gao, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper builds a bridge between two areas in optimization and machine learning by establishing a general connection between Wasserstein distributional robustness and variation regularization. It helps to demystify the empirical success of Wasserstein distributionally robust optimization and devise new regularization schemes for machine learning. 
    more » « less
  2. ABSTRACT

    It has long been established that plastic flow in the asthenosphere interacts constantly with the overlying lithosphere and plays a pivotal role in controlling the occurrence of geohazards such as earthquakes and volcanic eruptions. Unfortunately, accurately characterizing the direction and lateral extents of the mantle flow field is notoriously difficult, especially in oceanic areas where deployment of ocean bottom seismometers (OBSs) is expensive and thus rare. In this study, by applying shear wave splitting analyses to a dataset recorded by an OBS array that we deployed between mid-2019 and mid-2020 in the South China Sea (SCS), we show that the dominant mantle flow field has a NNW–SSE orientation, which can be attributed to mantle flow extruded from the Tibetan Plateau by the ongoing Indian–Eurasian collision. In addition, the results suggest that E–W oriented flow fields observed in South China and the Indochina Peninsula do not extend to the central SCS.

     
    more » « less
  3. Abstract Carbon flux metasomatism in the subduction environment is an important process, but it remains poorly understood. The paucity of exposed lower crust and upper mantle rocks in continental arcs renders xenoliths a major target for studying the slab-derived carbon cycle. This study of the carbonate phases in volcanic rocks from three drill cores in Ulleung Island, South Korea, sheds light on the interaction of carbon flux in the upper mantle and lower crust in a back-arc setting. The volcanic rocks from Ulleung Island range in composition from trachybasalt to trachyte and contain abundant euhedral pseudomorphic carbonate grains, ulvöspinel-hosted and biotite-hosted carbonate-silicate melt inclusions, and irregular carbonate globules. Integrated petrographic and geochemical studies of a variety of phenocrysts, carbonate phases, and carbonate-silicate inclusions in biotite and ulvöspinel indicate that recharging of carbon flux affected magma evolution. Carbon and oxygen isotopes of the pseudomorphic carbonate grains overlap with mantle values, indicating a carbonatite-like origin of the carbonate phases. The (MgO, FeO, CaO)-rich silicates in ulvöspinel-hosted silicate inclusions and pseudomorphic carbonate grains likely represent a primary melt, which formed from the partial melting of carbonated eclogite of the subducted slab within the mantle wedge beneath Ulleung Island. A petrogenetic model is proposed to illustrate that the crystal mush in the magma chamber was intruded by carbonate-rich liquids and caused alteration of cumulate crystals to generate the euhedral pseudomorphic carbonate grains. The extrusive magma captured those pseudomorphic grains and erupted to form the trachybasalt-trachyte units. The observed carbonate phases and their geochemical characteristics indicate that carbon flux metasomatism played a fundamental role in this back-arc magmatism. 
    more » « less
  4. While the density is a central property of a polymer film, it can be difficult to measure in films with a thickness of ∼100 nm or less, where the structure of the interfaces and the confinement of the polymer chains may perturb the packing and dynamics of the polymers relative to the bulk. This Article demonstrates the use of magneto-Archimedes levitation (MagLev) to estimate the density of thin films of hydrophobic polymers ranging from ∼10 to 1000 nm in thickness by employing a substrate with a water-soluble sacrificial release layer to delaminate the films. We validate the performance of MagLev for this application in the ∼1 μm thickness range by comparing measurements of the densities of several different films of amorphous hydrophobic polymers with their bulk values of density. We apply the technique to films < 100 nm and observe that, in several polymers, there are substantial changes in the levitation height, corresponding to both increases and decreases in the apparent density of the film. These apparent changes in density are verified with a buoyancy control experiment in the absence of paramagnetic ions and magnetic fields. We measure the dependence of density upon thickness for two model polymeric films: poly(styrene) (PS) and poly(methyl methacrylate) (PMMA). We observe that, as the films are made thinner, PS increases in density while PMMA decreases in density and that both exhibit a sigmoidal dependence of density with thickness. Such changes in density with thickness of PS have been previously observed with reflectometric measurements (e.g., ellipsometry, X-ray reflectivity). The interpretation of these measurements, however, has been the subject of an ongoing debate. MagLev is also compatible with nontransparent, rough, heterogeneous polymeric films, which are extremely difficult to measure by alternative means. This technique could be useful to investigate the properties of thin films for coatings, electronic devices, and membrane-based separations and other uses of polymer films. 
    more » « less